Speaker adaptation in the maximum a posteriori framework based on the probabilistic 2-mode analysis of training models
نویسنده
چکیده
In this article, we describe a speaker adaptation method based on the probabilistic 2-mode analysis of training models. Probabilistic 2-mode analysis is a probabilistic extension of multilinear analysis. We apply probabilistic 2-mode analysis to speaker adaptation by representing each of the hidden Markov model mean vectors of training speakers as a matrix, and derive the speaker adaptation equation in the maximum a posteriori (MAP) framework. The adaptation equation becomes similar to the speaker adaptation equation using the MAP linear regression adaptation. In the experiments, the adapted models based on probabilistic 2-mode analysis showed performance improvement over the adapted models based on Tucker decomposition, which is a representative multilinear decomposition technique, for small amounts of adaptation data while maintaining good performance for large amounts of adaptation data.
منابع مشابه
Bayesian speaker adaptation based on probabilistic principal component analysis
In this paper, we propose a Bayesian speaker adaptation technique based on the probabilistic principal component analysis (PPCA). The PPCA is employed to obtain the canonical speaker models which provide the a priori knowledge of the training speakers. The proposed approach is conveniently incorporated into the Bayesian adaptation framework where the parameters are adapted to the new speaker’s ...
متن کاملMaximum a posteriori adaptation of HMM parameters based on speaker space projection
This paper presents a novel approach to rapid speaker adaptation based on the speaker space projection paradigm in which the adapted model is constrained to lie on a specific subspace spanned by a small number of basis vectors. In order to select the basis vectors that form the speaker space, we apply probabilistic principal component analysis (PPCA) technique to a set of training speaker model...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملOnline Adaptation of Continuous Density Hidden Markov Models Based on Speaker Space Model Evolution
In this paper, we propose a new approach to online adaptation of continuous density hidden Markov model (CDHMM) based on speaker space model evolution. The speaker space model which characterizes the a priori knowledge of the training speakers is effectively described in terms of the latent variable model such as the factor analysis (FA) or probabilistic principal component analysis (PPCA). The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Audio, Speech and Music Processing
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013